

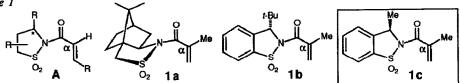
Tetrahedron Letters, Vol. 35, No. 21, pp. 3509-3512, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)E0644-D

Asymmetric Diels-Alder Reactions of Chiral N-Methacryloylsultams with 1,3-Dienes

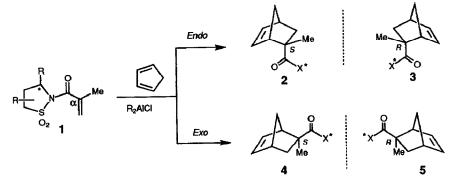
Wolfgang Oppolzer*, Boris M. Seletsky and Gérald Bernardinelli

Département de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland


<u>Abstract</u>: R₂AlCl-coordinated N-methacryloylsultam 1c undergoes efficient, *endo*-selective and highly diastereoface controlled [4+2]-additions to cyclopentadiene, isoprene, (E)-piperylene and the 2-silyloxydienes 10 and 12. The resulting crystalline cycloadducts are smoothly reduced with LiAlH₄ providing the recovered auxiliary and the corresponding enantiomerically pure alcohols.

Face-selective [4+2]-cycloadditions of $C(\alpha)$ -substituted enoyl dienophiles offer the attractive possibility of constructing a quaternary center of chirality together with up to three more centers in a single step. 1,2)

Encouraged by the efficient and practical use of bornanesultam ^{3a}) and toluenesultam ^{3b}) auxiliaries in asymmetric Diels-Alder reactions of $C(\alpha)$ -non-substituted dienophiles A, we thus explored the additions of $C(\alpha)$ -substituted N-encoulsultams to 1.3-dienes.


N-Methacryloylsultams 1a ⁴) (m.p. 175-177°C), 1b ⁴) (oil) and 1c ⁴) (m.p. 75°C) were readily obtained in 79-95% yield by acylation of the corresponding sultams ⁷) with methacryloyl chloride in the presence of NaH or $Et_3N.3$

Scheme 1

Dienophiles 1a, 1b and 1c underwent smooth, Et_2AlCl promoted [4+2]-cycloadditions to a range of 1,3dienes at -90 to -20°C. Our results are summarized in Schemes 2,3 and Table 1.⁸

First, we studied the additions of N-methacryloyl sultams 1a, 1b and 1c to cyclopentadiene (Scheme 2). Scheme 2

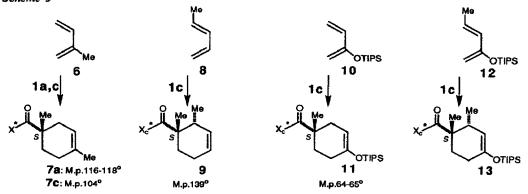
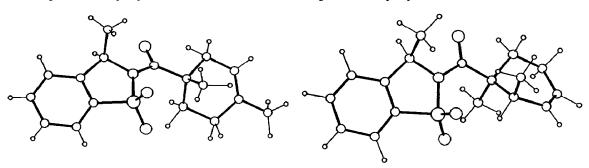

Successive addition of Et₂AlCl (4 mol-equiv. in hexane) and cyclopentadiene (10 mol-equiv. in CH₂Cl₂) to a stirred solution of bornanesultam derivative 1a, stirring at -78°C for 20 h, quenching with 1N aq. HCl at -78°C and workup provided, with 27:73-*endo/exo* selectivity, cycloadducts 2a - 5a (26 : 1.4 : 32.5 : 40.1) in 74% yield (entry 1). It follows that the π -facial control of this cycloaddition amounts to disappointing 10% in the (favored) *exo*- and to 90% in the *endo*-orientation. Analogous Diels-Alder reaction of *t*-butylsubstituted toluenesultam derivative 1b at -40°C also proceeded in a moderately *exo*-selective manner but with improved face selection giving *exo*-product 5b in 76% *d.e. (entry 2)*. More satisfactorily, *N*-methacryloyl toluenesultam 1c reacted with cyclopentadiene at -90°C preferentially in an *endo*-mode (*endo/exo* = 80:20) giving adducts 2c - 5c (80 : 0 : 19 : 1) in 82% yield which corresponds to π -facial selections of 100% in the *endo*- and 91% in the *exo*-process (entry 3). Carrying out the reaction of 1c in toluene/hexane at -78°C gave adducts 2c - 5c (78.1 : 0.5 : 18.7 : 2.7) in 97% yield (entry 4).

Table 1: Asymmetric Diels-Alder Reactions of Chiral N-Methacryloylsultams with 1,3-Dienes (4 equiv. Et₂AlCl in CH₂Cl₂/Hexane)*)

Entry	Dienophile	Diene	Temp. (°C)	Time (h)	Yield ^{b)} (%)	endo/exo (C=O)	Major Product	<i>endo</i> d.e. (%)	exo d.e. (%)
1	1.	cyclopentadiene	-78	20	74	27 : <u>73</u>	5a	90	10
2	1 b	cyclopentadiene	-40	20	63	35 : <u>65</u>	5b	83	<u>76</u>
3	1c	cyclopentadiene	-90c)	9	82	<u>80</u> : 20	2c	100	91
4	1c	cyclopentadiene	-78c,d)	15	97	<u>79</u> :21	2c	99	74
5	1.	isoprene	-20	15	63	-	7 a	<u>91</u>	-
6	1c	isoprene	-40	72	94	-	7c	27	-
7	1c	(E)-piperylene	-40	144	83	<u>86</u> : 14	9	80	97
8	1 c	silyloxydiene 10	-78	48	67	-	11•)	100	
9	1c	silyloxydiene 10	-30	15	84	-	11•)	<u>95</u>	
10	1c	silyloxydiene 12	-40	15	69	<u>77</u> : 23	13•)	85	>95

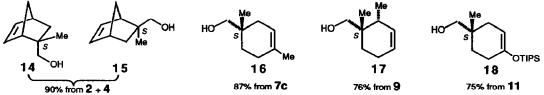
a) Diastereoisomer ratios of crude and purified adducts determined after reductive removal of the auxiliary group (LiAlH₄) and analysis of the resulting alcohols i) by GC of their trifluoroacetates using a chiral column (*Lipodex C*): entries 1-7, ii) by O-desilylation and GC (*Lipodex C*) of their trifluoroacetates: entry 10, and iii) by ¹⁹F-NMR of their 'Mosher esters' derived from (R)-(-)- α -methoxy- α -(trifluoromethyl)phenacetyl chloride: entry 8, or by direct HPLC comparison of the adducts with a reference mixture of epimers (entries 8,9). b) Yield after FC. c) Me₂AlCl was used instead of Et₂AlCl. d) In toluene/hexane. e) Configurations of adducts 11 and 13 were assigned by analogy with those of adducts 7 and 9.


We then examined the additions of dienophiles 1 to acyclic dienes (Scheme 3). Scheme 3

[4+2]-Cycloadditions of methacryloylsultams 1a (at -20°C) and 1c (at -40°C) to isoprene furnished crystalline cyclohexenes 7a ⁴) and 7c ⁴) with excellent regiochemical (>98%) and π -facial control of 91% and 97%, respectively (entries 5,6). Thus, reaction of 1c with isoprene (6, entry 6), followed by one recrystallization (MeOH) provided adduct 7c in 85% yield and 99% *d.e.*. X-ray diffraction analysis of 7c proved the depicted regio- and stereochemistry (Figure 1). ^{9a})

Figure 1: X-ray crystal structure of 7c

Figure 2: X-ray crystal structure of 9



Addition of toluenesultam dienophile 1c to (E)-piperylene proceeded more slowly (6 d at -40°C) with 86:14 endo/exo preference and with 80% π -face selective formation of endo-product 9. ⁴) After purification (FC, several recrystallizations from hexane/AcOEt then MeOH), the absolute and relative configuration of 9 was unambiguously assigned via X-ray diffraction studies (Figure 2). ⁹b)

Finally, we examined the Et₂AlCl-mediated [4+2]-additions of N-methacryloylsultam 1c to triisopropylsilyl (TIPS) protected 2-oxygenated 1,3-dienes 10 and 12. 10) Addition of 1c to 2-silyloxybutadiene 10 at -78°C (48 h) took place with -100% π -face selection giving, after crystallization (MeOH) pure adduct 11⁴) in 62% yield (entry 8). At -30°C, the reaction was complete in 15 h to give adduct 11 in improved yield (84%) with a slightly decreased *d.e.* of 95% (entry 9). Similar cycloaddition of dienophile 1c to 2-silyloxypiperylene 12 (-40°C, 15 h) furnished a 77:23-mixture of *endo/exo* adducts (69% yield) with good to excellent π -face discrimination (85% *d.e.* for major *endo*-product 13 and >95% *d.e.* for its *exo*-isomer). These results compare very favorably with previously reported additions of silyloxydienes 10 and 12 to a chiral methacryloyl dienophile. ²a)

Removal of the auxiliary moiety from the [4+2]-adducts by treatment with $LiAlH_4$ gave recovered sultam (87-96%) and enantiomerically pure alcohols 14 - 18 in good yields (Scheme 4). The optical rotations of alcohols 14 and 15 agree with reference values. ⁴)

Scheme 4

In summary, N-methacryloylsultam 1c is a crystalline, readily available α -methylsubstituted dienophile which undergoes highly C(α)-Re-face selective [4+2]-cycloadditions to cyclopentadiene as well as acyclic alkyl- or 2-oxygenated dienes. The crystallinity of the products and the efficient recovery of the auxiliary add to its practical value.

Acknowledgements: Financial support of this work by the Swiss National Science Foundation, Sandoz Pharma Ltd., Basel and Givaudan-Roure AG, Dübendorf, is gratefully acknowledged. We are indebted to Prof. R. K. Boeckman for kindly providing a sample of ent-14 and communicating its optical rotation. We thank Mr. J. P. Saulnier, Mr. A. Pinto and Mrs. C. Clément for NMR and MS measurements.

REFERENCES AND NOTES

- a) Methacrolein undergoes mostly exo-selective enantioselective Diels-Alder reactions with 1,3-dienes in the presence of 0.5 to 100 mol% of a chiral Lewis acid: K. Furuta, S. Shimizu, Y. Miwa, H. Yamamoto, J. Org. Chem. 1989, 54, 1481; D. Kaufmann, R. Boese, Angew. Chem. 1990, 102, 568; Angew. Chem. Int. Ed. Engl. 1990, 29, 545; M. Takasu, H. Yamamoto, Synlett. 1990, 194; D. Sartor, J. Saffrich, G. Helmchen, ibid., 1990, 197; K. Mikami, M. Terada, Y. Motoyama, T. Nakai, Tetrahedron Asym. 1991, 2, 643; S. Kobayashi, M. Murakami, T. Harada, T. Mukaiyama, Chem. Lett. 1991, 1341; E. J. Corey, T.-P. Loh, J. Am. Chem. Soc. 1991, 113, 8966; E. J. Corey, T.-P. Loh, T. D. Roper, M. D. Azimioara, M. C. Noe, ibid., 1992, 114, 8290; J. Bao, W. D. Wulff, A. L. Rheingold, ibid., 1993, 115, 3814; J.-P. G. Seerden, H. W. Scheeren, Tetrahedron Lett. 1993, 34, 2669; K. Maruoka, N. Murase, H. Yamamoto, J. Org. Chem. 1993, 58, 2938; K. Ishihara, Q. Gao, H. Yamamoto, J. Am. Chem. Soc. 1993, 115, 10412; K. Ishihara, H. Yamamoto, ibid., 1994, 116, 1561. b) For asymmetrically catalyzed Diels-Alder reactions of α-bromoacrolein to 1,3-dienes see ^{1a}) and: J. A. Marshall, S. Xie, J. Org. Chem. 1992, 57, 2987; K. Ishihara, Q. Gao, H. Yamamoto, J. Org. Chem. 1993, 58, 6917.
- a) Asymmetric Diels-Alder reactions of a methacryloyl dienophile, carrying a chiral auxiliary group were recently reported: R. K. Boeckman, Jr., S. G. Nelson, M. D. Gaul, J. Am. Chem. Soc. 1992, 114, 2258. b) For earlier, isolated and preliminary studies see: S. Masamune, L. A. Reed III, J. T. Davis, W. Choy, J. Org. Chem. 1983, 48, 4441; D. A. Evans, K. T. Chapman, J. Bisaha, J. Am. Chem. Soc. 1988, 110, 1238.
- a) W. Oppolzer, I. Rodriguez, J. Blagg, G. Bernardinelli, Helv. Chim. Acta 1989, 72, 123; W. Oppolzer, Pure & Appl. Chem. 1990, 62, 1241; P. J. Kocienski, M. Stocks, D. Donald, M. Perry, Synlett 1990, 38;
 b) W. Oppolzer, M. Wills, M. J. Kelly, M. Signer, J. Blagg, Tetrahedron Lett. 1990, 31, 5015.
- 4) All new compounds were characterized by IR, ¹H-NMR, ¹³C-NMR and MS. [α]_D values (20°C, CHCl₃ unless otherwise specified, c = g/100 ml)= 1a: -97.4 (1.02); 1b: -13.2 (1.03); 1c: -96.6 (0.93); 7a: +18.5 (CCl₄, 0.27); 7c: +32.4 (1.35); 9: -126.9 (0.59); 11: +31.1 (CCl₄, 0.9); 14: -46.9 (95% EtOH, 0.42), -33.5 (0.22), lit. ⁵) -46.1 (extrapol., 95% EtOH); ent-14 ⁶): +33.9 (2.08); 15: +68.1 (95% EtOH, 0.16); ent-15 ⁵): -67.8 (extrapol., 95% EtOH); 16: -10.3 (1.75); 17: -147.0 (0.63); 18:-2.9 (CCl₄, 1.32).
- 5) J. A. Berson, J. S. Walia, A. Remanick, S. Suzuki, P. Reynolds-Warnhoff, D. Willner, J. Am. Chem. Soc. 1961, 83, 3986.
- 6) R. K. Boeckman^{2a)} and private communication.
- 7) Bornane-10,2-sultam is distributed up to a multi-kg scale by: NEWPORT Synthesis Ireland Ltd.; Dublin/Ireland and by OXFORD ASYMMETRY Ltd, Abingdon/UK. Preparation of methyl-substituted toluenesultam: W. Oppolzer, M. Wills, C. Starkemann, G. Bernardinelli, Tetrahedron Lett. 1990, 31, 4117; preparation of t-butyl-substituted toluenesultam: W. Oppolzer, A. J. Kingma, S. K. Pillai, *ibid.*, 1991, 32, 4893.
- 8) The following procedures are representative: Diels-Alder reaction: A 1 M soln. of Et₂AlCl in hexane (1.56 ml) was added dropwise to a stirred soln. of N-methacryloylsultam 1c (98 mg, 0.39 mmol) in CH₂Cl₂ (1.2 ml) at -78°C. After stirring for 1 h, a soln. of 2-TIPSoxybutadiene 10 (530 mg, 2.34 mmol) in CH₂Cl₂ (0.5 ml) was added over 2 min. by syringe along the cold wall of the reaction flask. Stirring at -78°C for 48 h, addition of sat. aq. NaHCO₃ soln. at -78°C, vigorous stirring, workup (CH₂Cl₂), FC (Al₂O₃, act.III, hexane/AcOEt 19:1 \rightarrow 4:1) furnished adduct 11 (125 mg, 67%; 115 mg, 62% after crystallization from MeOH). Auxiliary removal: A soln. of adduct 11 (30 mg, 0.06 mmol) in Et₂O (3 ml) was added to a stirred suspension of LiAlH₄ (3 mg, 0.09 mmol) in Et₂O (1.5 ml). Stirring at r.t. for 1 h, addition of sat. aq. Na₂SO₄ soln. (3 drops), stirring, filtration, drying and evaporation of the filtrate, followed by crystallization of the residue from pentane afforded crystalline sultam auxiliary (10 mg, 87%). Evaporation of the pentane soln. and FC gave pure alcohol 18 (oil, 14 mg, 75%).
- 9) Crystallographic data for compounds 7c and 9 have been deposited at the Cambridge Data Centre. Structure factors may be obtained from one of us (G.B.). The absolute configuration of both compounds has been determined: G. Bernardinelli, H. D. Flack, Acta Cryst. 1985, A41, 500. a) The crystals of cycloadduct 7c (MeOH, m.p. 104°C) are orthorhombic, a = 7.087 (1), b = 7.544 (2), c = 30.379 (5) Å; P2₁2₁2₁, Z = 4; d_x = 1.31 g.cm⁻³; x = 0.17; F(000) = 680. R = 0.049 (ωR = 0.024; ω = 1/σ²(Fo)) for 1537 observed reflections [[F0]>4σ(F0]]. b) The crystals of cycloadduct 9 (MeOH, m.p. 139°C) are orthorhombic, a = 7.014 (1), b = 9.764 (2), c = 24.024 (8) Å; P2₁2₁2₁2₁, Z = 4; d_x = 1.29 g.cm⁻³; x = -0.08; F(000) = 680. R = 0.071 (ωR = 0.026; ω = 1/σ²(F0)) for 957 observed reflections [[F0]>4σ(F0)].
- Silyloxydienes 10 and 12 were prepared by reaction of (i-Pr)₃SiOTf/NEt₃ with methylvinylketone and 3-penten-2-one, respectively, in analogy to the silylation procedure of : E. J. Corey, H. Cho, C. Rücker, D. H. Hua, *Tetrahedron Lett.* 1981, 22, 3455.

(Received in Germany 18 March 1994; accepted 22 March 1994)